Содержание
Напряжение генератора переменного тока прямо пропорционально скорости движения магнитов, и соответственно оборотом генератора. То-есть если обороты увеличились в два раза, то и напряжение соответственно увеличится в два раза.
Чтобы вычислить напряжение генератора на определенных оборотах нужно магнитную индукцию магнитов (Тл) умножить на активную длину проводника (м), и умножить на скорость движения магнитов (м/с). Формула расчета выглядит так.
Формула очень простая, скорость магнитов вычислить легко, достаточно вычислить длину окружности и умножить на количество оборотов генератора. Активная длинна проводника это та часть которую перекрывают магниты. А вот индукцию магнитов можно только измерить или вычислить путем прокрутки готового генератора. Если индукция магнитов не известна то ее можно брать равной 0,8Тл. Это значение справедливо для аксиальных генераторов где расстояние между магнитами равно толщине самих магнитов. У генераторов с железными статорами не все так однозначно, но тоже при использовании разумной толщины магнитов (3-5мм) индукция в зазоре будет примерно 0,8Тл.
Пример расчета генератора
Так-как высота магнитов 40мм, то значит и активная длинна в катушках 40мм или 0,04м. За один оборот генератора магниты продавливают расстояние (L=2πr) 27/2*3,14=84,78см. Получается за один оборот магниты преодолеют 0,84м. Возьмем формулу выше E=B·V·L и подставим значения.
0,8*0,84*0,04=0,02V, это означает что при скорости вращения 1об/с или 60об/м напряжение одного витка катушки составит 0,02 вольта.
Чтобы узнать напряжение фазы генератора нужно посчитать количество витков. Из информации выше известно что в генераторе 18 катушек по 70 витков, значит в фазе 6 катушек. 6*70=420витков. теперь 420*0,02=8,4вольта. Таким образом мы знаем что напряжение фазы при 60об/м равно 8,4вольта. Если фазы генератора соединить в звезду то напряжение поднимется в 1,7раза, это значит 8,4*1,7=12,28вольта. Вот так вычисляется напряжение генератора. Так-как напряжение генератора пропорционально скорости движения магнитов, то при 60об/м=12,2вольта, при 120об/м=24,4вольта, при 180об/м=36,6вольта, и так далее.
Еще момент: Но если на бумаге начертить схему расположения магнитов и катушек в этом генераторе, то будет видно что магниты перекрывают лишь половину катушек фазы, это значит что не все сразу витки катушек фаз участвуют в выработке энергии. И это надо учитывать, выше написано что в фазе 420 витков, но только половина из них перекрывается магнитами значит всего 210витков будет вырабатывать напряжение. А это получается 420/2=210*0,02=4,2вольта при 60об/м с фазы, если фазы соединить в звезду, то 4,2*1,7=7,14 вольта. Площадь магнитов тоже не маловажный фактор.
Как вычислить силу тока генератора.
Можно посчитать какой ток выдаст генератор на аккумулятор, но не известно сопротивление фазы. Тогда можно сопротивление вычислить. Если в генераторе катушки намотаны проводом 1мм, а средняя длинна витка в катушке 0,08м, а витков в катушках по 70. Получается 420*0,08=33,6метра. Сопротивление 1м провода толщиной 1мм равно 0,0224Ом значит 33,6*0,0224=0,75Ом. Сопротивление фазы равно 0,75Ом, чтобы узнать сопротивление всего генератора при соединении звезду нужно сопротивление умножить на 1,7 получится 0,75*1,7=1,27Ом. Теперь когда известно сопротивление можно посчитать ток генератора.
Например нам надо узнать какой ток генератор выдаст на аккумулятор 14 вольт при 300об/м. Тогда от напряжения генератора 44,4вольта (7,4*6) нужно отнять напряжение аккумулятора 14 вольт и разделить на сопротивление генератора 44,4-14=30.4/1,27=23А. Получается что ток на аккумулятор составит 23А.
Но в реальности ток будет меньше потому что не учтено сопротивление аккумулятора, оно хоть и небольшое, но присутствует. Так-же сопротивление соединяющих проводов, например если провода 20 метров и он тонкий то это существенное сопротивление. Так-же есть еще активное и реактивное сопротивление генератора, которое может быть достаточно большим и значимым.
Из-за активного и реактивного генератора падает общий КПД самого генератора, так-как на внутреннем сопротивлении теряется мощность ( нагрев катушек и т.п.). Поэтому в реальности сила тока будет меньше. На малых оборотах и при небольшом токе можно КПД генератора брать около 0,8мм, тогда 23*0,8=18,4Ампер.В среднем из-за разных других потерь рекомендуют брать средний КПД около 0,5, тогда в реальности будет 23*0,5=11,5Ампер, но все же основной показатель это сопротивление генератора.
В общем для примерного расчета генератора нужны всего две основные формулы, это формула расчета напряжения генератора, и формула расчета силы тока генератора.
Конечно, как я уже упоминал здесь учитывается не все моменты от которых зависит напряжение и ток генератора, но основные моменты, от которых координатно зависят характеристики генератора здесь учтены. Если вооружиться этими двумя формулами и проверить готовые генераторы, все параметры которых известны, то результаты будут очень близки к реальным генераторам. Перед написанием статьи я проверил так-же и свои генераторы, если брать КПД 50% то данные практически совпадают, разброс на разных оборотах 10-20%.
Если возникли вопросы, или вы заметили неточности, то оставляйте комментарии под этой статьей.
Выбор генератора следует начинать с расчета его мощности. Важно помнить, что она должна быть не только достаточной для снабжения электроэнергией конкретного объекта, но и исключать недостаточную нагрузку (работу вхолостую).
Чтобы упростить для своих клиентов эту нелегкую задачу, мы создали специальный калькулятор, при помощи которого можно легко рассчитать мощность генератора. Для этого:
- Шаг №1
Напротив каждого из приведенных бытовых приборов обозначьте количество устройств, работающих синхронно (т.е. в одно время). Это позволит определить максимальную нагрузку и мощность генератора, которая действительно Вам необходима. - Шаг №2
Приблизительная необходимая мощность будет рассчитана в нижней части таблицы.
Устройство | Мощность уст-ва (Вт) |
Кол-во приборов |
Устройство | Мощность уст-ва (Вт) |
Кол-во приборов |
---|---|---|---|---|---|
Лампа дневного освещения | 23 | Насос системы отопления | 100 | ||
Лампа накаливания | 100 | Видеомагнитофон | 100 | ||
Шлифовальная машинка | 175 | Холодильник | 200 | ||
Электро-грелка | 200 | Музыкальный центр | 200 | ||
Цветной телевизор | 250 | DVD-проигрыватель | 300 | ||
Принтер | 350 | Лобзик | 400 | ||
Наждак | 400 | Персональный компьютер | 400 | ||
Дрель 13мм | 450 | Шлифовальный станок | 450 | ||
Кусторез | 500 | Прожектор | 500 | ||
Шлифовальная машинка 100мм | 550 | Опрыскиватель | 600 | ||
Факс | 600 | Дрель с перфоратором 13мм | 600 | ||
Морозильная камера | 700 | Перфоратор | 700 | ||
Рубанок | 700 | Шлифовальная машинка 100мм | 750 | ||
Фен | 1000 | Малая газонокосилка | 1000 | ||
Циркулярная пила 125мм | 1000 | Малый фрезерный станок | 1000 | ||
Ленточный шлифовальный станок | 1020 | Пылесос | 1100 | ||
Кофеварка | 1200 | Утюг с отпаривателем | 1250 | ||
Бетономешалка | 1320 | Цепная пила | 1500 | ||
Микроволновая печь | 1500 | Обогреватель | 1500 | ||
Тепло-вентилятор | 1500 | Копировальная машина | 1600 | ||
Циклевальная машина | 2000 | Компрессор | 2200 | ||
Шлифовальная машинка 300мм | 2500 | Электрочайник | 2500 | ||
Калорифер | 3000 | Отбойный молоток | 3000 | ||
Мойка высокого давления | 3500 | Сварочный трансформатор 130 А | 3500 | ||
Стиральная машина | 4000 | ||||
ИТОГО | |||||
Подобрать генератор |
Для чего следует знать коэффициент мощности?
В предложениях большинства изготовителей можно встретить значение максимальной выходной мощности. Важно помнить, что этот показатель приведен для кратковременной работы генератора (у различных брендов он составляет от несколько секунд до нескольких минут).
Действительное значение номинальной мощности чаще всего ниже (на проценты, а иногда – на их десятки). Предположим, электрическая станция дает 5 кВа. Коэффициент мощности (т.е. косинус угла φ) равняется 0,8. Следовательно, в такой ситуации мы реально получаем только 4 кВт (рассчитывается по формуле 5 кВа х 0,8). Именно в этом заключается различие между кВт и кВА.
Генератор тока – это такой тип электрической машины, которая способствует преобразованию механической энергии в электрическую. Основано действие генераторов тока по принципу электромагнитной индукции: электродвижущая сила (ЭДС) наводится в движущемся в магнитном поле проводе.
Производить генератор тока может не только постоянный, но и переменный ток. На латыни слово генератор (generator) означает – производитель.
На мировом рынке наиболее известными поставщиками генераторов являются компании: General Electric (GE), ABB, Siemens AG, Mecc Alte.
Генераторы постоянного тока.
Единственным типом источника для получения электроэнергии на протяжении долгого времени были электрические генераторы.
Переменный ток индуктируется в обмотке якоря генератора постоянного тока, затем он электромеханическим выпрямителем – коллектором преобразуется в постоянный ток. Особенно при большой частоте вращения якоря генератора, процесс выпрямления тока коллектором связан с очень частым износом щеток и коллектора.
Различаются генераторы постоянного тока по характеру их возбуждения, они бывают с самовозбуждением и независимого возбуждения. К независимому источнику питания в генераторах с электромагнитным возбуждением подключается обмотка возбуждения, располагающаяся на главных полюсах.
Постоянными магнитами, из которых производятся полюсы машины, возбуждаются генераторы с магнитоэлектрическим возбуждением. Основное применение генераторы постоянного тока находят в тех отраслях промышленности, где постоянный ток является предпочтительным по условиям производства (предприятия электролизной и металлургической промышленности, суда, транспорт и прочие). В качестве источников постоянного тока и возбудителей синхронных генераторов применяются генераторы постоянного тока на электростанциях.
Может достигать до 10 Мегаватт мощность генератора тока.
Генераторы переменного тока.
При достаточно высоком напряжении получать большие токи позволяют генераторы переменного тока. Несколько типов индукционных генераторов различают в настоящее время.
Они состоят из создающего магнитное поле постоянного магнита или электромагнита и обмотки, индуцируется в которой переменная ЭДС. Так как складываются наводимые в последовательно соединенных витках ЭДС, то в рамке индукции амплитуда ЭДС будет пропорциональна количеству в ней витков. Также она пропорциональна через каждый виток амплитуде переменного магнитного потока. В генераторах тока, чтобы получить большой магнитный поток применяется специальная магнитная система, состоящая из двух сердечников, изготовленных из электротехнической стали. В пазах одного из сердечников размещены создающие магнитное поле обмотки, а в пазах второго располагаются обмотки, в которых индуцируется ЭДС. Один из сердечников называется ротором, так как он вращается вокруг вертикальной или горизонтальной оси, вместе со своей обмоткой.
Другой сердечник называется статором – это неподвижный сердечник с его обмоткой. Как можно меньшим делается зазор между сердечниками ротора и статора, наибольшее значение потока магнитной индукции обеспечивается этим. Электромагнит, являющийся ротором вращается в больших промышленных генераторах, а обмотки, уложенные в пазах статора и в которых наводится ЭДС остаются неподвижными.
С помощью скользящих контактов приходится во внешнюю цепь подводить ток к ротору или отводить его из обмотки ротора. Контактными кольцами, которые присоединены к концам его обмотки для этого снабжается ротор. К кольцам прижаты неподвижные пластины-щетки, они осуществляют связь с внешней цепью обмотки ротора. В обмотках создающего магнитное поле электромагнита, сила тока значительно меньше той силы тока, которую отдает генератор тока во внешнюю цепь. Поэтому гораздо удобнее снимать генерируемый ток с неподвижных обмоток, а сравнительно слабый ток подводить через скользящие контакты к вращающемуся электромагниту. Вырабатывается этот ток, расположенным на том же валу отдельным генератором постоянного тока (возбудителем). Вращающимся магнитом создается магнитное поле в маломощных генераторах тока, щетки и кольца в таком случае вообще не требуются.
Бывают двух типов обмотки возбуждения синхронных генераторов: с явнополюсными и неявнополюсными роторами. Выступают из индуктора несущие обмотки возбуждения в генераторах с явнополюсными роторами полюса. На сравнительно низкие частоты вращения рассчитаны генераторы данного типа, они используются для работы с приводом от поршневых паровых машин, гидротурбин, дизельных двигателей. Для привода синхронных генераторов с неявнополюсными роторами применяются газовые и паровые турбины. Стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполнены в виде медных пластин, представляет собой ротор такого генератора. В пазах фиксируются витки, а для снижения потерь мощности и уровня шума, связанных с сопротивлением воздуха шлифуется, а затем полируется поверхность ротора.
По большей части трехфазными делаются обмотки генераторов тока. Подобное сочетание движущихся частей, способных создавать энергию также экономично и непрерывно, встречается в механике редко.
Современный генератор тока является внушительным сооружением, состоящим из медных проводов, стальных конструкций и изоляционных материалов. С точностью до 1 миллиметра изготавливаются важнейшие детали генераторов, которые сами имеют размеры несколько метров.