Содержание
- 1 Исходные данные для расчета заземления
- 2 Пример расчета заземления
- 3 Расчет электролитического заземления
- 4 Расчет заземления: практические данные
- 5 Расчет заземления в виде нескольких электродов
- 6 Расчет необходимого количества заземляющих электродов
- 7 Расстояние между заземляющими электродами
- 8 Соединение электродов в заземлитель
- 9 Сервис расчета вероятности удара молнии в объект
Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.
Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.
Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.
К чему сводится расчет заземления?
Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.
Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.
Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.
Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.
Исходные данные для расчета заземления
1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.
1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:
- а) полоса 12х4 – 48 мм2;
- б) уголок 4х4;
- в) круглая сталь – 10 мм2;
- г) стальная труба (толщина стенки) – 3.5 мм.
Минимальные размеры арматуры применяемые для монтажа заземляющих устройств
1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.
1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.
В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).
Цель расчета защитного заземления.
Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.
Пример расчета заземления
Сопротивление растекания тока одного вертикального заземлителя (стержня):
где – ρэкв – эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.
В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:
где – Ψ – сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t – заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.
Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.
Грунт | Удельное сопротивление грунта, Ом·м |
Торф | 20 |
Почва (чернозем и др.) | 50 |
Глина | 60 |
Супесь | 150 |
Песок при грунтовых водах до 5 м | 500 |
Песок при грунтовых водах глубже 5 м | 1000 |
Заглубление горизонтального заземлителя можно найти по формуле:
Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.
Тип заземляющих электродов | Климатическая зона | |||
I | II | III | IV | |
Стержневой (вертикальный) | 1.8 ÷ 2 | 1.5 ÷ 1.8 | 1.4 ÷ 1.6 | 1.2 ÷ 1.4 |
Полосовой (горизонтальный) | 4.5 ÷ 7 | 3.5 ÷ 4.5 | 2 ÷ 2.5 | 1.5 |
Климатические признаки зон | ||||
Средняя многолетняя низшая температура (январь) | от -20+15 | от -14+10 | от -10 до 0 | от 0 до +5 |
Средняя многолетняя высшая температура (июль) | от +16 до +18 | от +18 до +22 | от +22 до +24 | от +24 до +26 |
Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:
Rн – нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).
Характеристика электроустановки | Удельное сопротивление грунта ρ, Ом·м | Сопротивление Заземляющего устройства, Ом |
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В: | ||
660/380 | до 100 | 15 |
свыше 100 | 0.5·ρ | |
380/220 | до 100 | 30 |
свыше 100 | 0.3·ρ | |
220/127 | до 100 | 60 |
свыше 100 | 0.6·ρ |
Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.
Сопротивление растекания тока для горизонтального заземлителя:
Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).
Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:
– в ряд;
– по контуру.
а – расстояние между заземляющими стержнями.
Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:
Полное количество вертикальных заземлителей определяется по формуле:
ηв – коэффициент спроса вертикальных заземлителей (таблица 4).
Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.
Полученное при расчете число заземлителей округляется до ближайшего большего.
Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.
С помощью этого онлайн-калькулятора Вы сможете рассчитать сопротивление системы защитного заземления, состоящей из горизонтально соединённых стальной полосой вертикальных электродов.
Для расчёта заземления заполните поля формы следующим образом:
- Введите значение нормируемого сопротивления растеканию тока на землю. Обращаем Ваше внимание, что сопротивление заземляющего устройства не должно превышать 10 Ом. Допустимые значения сопротивления заземляющих установок определены Правилами устройства электроустановок параграфом 1.7.101.
- Затем выберите климатическую зону, в которой находится объект электромонтажа.
- Далее введите параметры грунта и характеристики заземлителей – вертикального и горизонтального.
- После нажатия кнопки "Рассчитать" Вы получите расчётные значения характеристик системы заземления.
*Расстояние между вертикальными электродами берется из расчёта 1,1 их длины.
**Результаты калькуляции носят ориентировочный характер и могут несколько отличаться от реальных значений ввиду сопутствующих электромонтажу факторов и условий.
Расчет заземления (расчет сопротивления заземления) для одиночного глубинного заземлителя на основе модульного заземления производится как расчет обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.
Формула расчета сопротивления заземления одиночного вертикального заземлителя:
![]()
где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T – заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π – математическая константа Пи (3,141592)
ln – натуральный логарифм
Для готовых комплектов модульного заземления ZANDZ формула расчета сопротивления упрощается до вида:
– для комплекта ZZ-000-015
– для комплекта ZZ-000-030
Для расчета взяты следующие величины:
L = 15 (30) метров
d = 0,014 метра = 14 мм
T = 8 (15,5) метров: с учетом заглубления электрода на глубине 0,5 метра
Расчет электролитического заземления
Расчет электролитического заземления (расчет сопротивления заземления) производится как расчет обычного горизонтального электрода в виде трубы, имеющей длину 2,4 метра с учетом влияния электролита на окружающий грунт (коэффициент С).
Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:
![]()
где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T – заглубление (расстояние от поверхности земли до заземлителя) (м)
π – математическая константа Пи (3,141592)
ln – натуральный логарифм
С – коэффициент содержания электролита в окружающем грунте
Коэффициент C варьируется от 0,5 до 0,05.
Со временем он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. Как правило, он составляет 0,125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0,5 – 1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.
Для электролитического заземления ZANDZ формула расчета сопротивления заземления упрощается до вида:
– для комплекта ZZ-100-102
Для расчета взяты следующие величины:
L = 2,4 метра
d = 0,065 метра = 65 мм
T = 0,6 метра
С = 0,125
Расчет заземления: практические данные
Стоит обратить внимание на тот факт, что получаемые практически результаты ВСЕГДА отличаются от теоретических расчетов заземления.
В случае глубинного / модульного заземления – разница связана с тем, что в формуле расчета чаще всего используется НЕИЗМЕННОЕ ОЦЕНОЧНОЕ удельное сопротивление грунта НА ВСЕЙ глубине электрода. Хотя в реальности, такого никогда не наблюдается.
Даже если характер грунта не меняется – его удельное сопротивление уменьшается с глубиной: грунт становится более плотным, более влажным; на глубине от 5 метров часто находятся водоносные слои.
Фактически, получаемое сопротивление заземления будет ниже расчетного в разы (в 90% случаев получается сопротивление заземления в 2-3 раза меньше).
В случае электролитического заземления – разница связана с тем, что в формуле расчета используется коэффициент "С" , берущийся в расчет как усредненная поправочная величина, которую нельзя описать в виде формул и зависимостей. Определяется он исходя из множества характеристик грунта (температура, влажность, рыхлость, диаметр частиц, гигроскопичность, концентрации солей и т.п.)
Процесс выщелачивания длителен и относительно постоянен. Со временем концентрация электролита в окружающем грунте растет. Также растет объем грунта с присутствием электролита вокруг электрода. Через 3-5 лет после монтажа этот получившийся "полезный" объем можно описать трехметровым радиусом вокруг электрода.
Из-за этого, сопротивление электролитического заземления ZANDZ со временем существенно падает . Замеры показали уменьшение в разы:
- 4 Ома сразу после монтажа
- 3 Ома через 1 год
- 1,9 Ома спустя 4 года
Расчет заземления в виде нескольких электродов
Расчет заземления (расчет сопротивления заземления) для нескольких электродов модульного заземления производится как расчет параллельно-соединенных одиночных заземлителей.
Формула расчета с учетом взаимного влияния электродов – коэффициента использования:
![]()
где:
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
N – количество электродов в заземлителе
Вклад соединительного заземляющего проводника здесь не учитывается.
Расчет необходимого количества заземляющих электродов
Проведя обратное вычисление получим формулу расчета количества электродов для необходимой величины итогового сопротивления сопротивления (R):
![]()
где:
] [ – округление результата в бОльшую сторону.
R – необходимое сопротивление многоэлектродного заземлителя (Ом)
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
Вклад соединительного заземляющего проводника здесь не учитывается.
Расстояние между заземляющими электродами
При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор – расстояние между заземляющими электродами. В формулах расчета заземления этот фактор описывается величиной "коэффициент использования".
Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:
- не менее глубины погружения электродов – для модульного
- не менее 7 метров – для электролитического
Соединение электродов в заземлитель
Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.
Сечение проводника часто выбирается – 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.
Для частного дома без молниеприемников достаточно медного провода сечением 16-25 мм² .
Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления".
Сервис расчета вероятности удара молнии в объект
Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект, защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)
Этот инструмент позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:
- меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
- меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
Функционал сервиса позволяет рассчитать эффективность запланированной молниезащиты в виде понятных параметров:
- вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
- число ударов молнии в систему в год;
- число прорывов молнии, минуя защиту, в год.
Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.
Для того, чтобы приступить к расчету, перейдите по ссылке.