Содержание
Ключевой режим работы характеризуется тем, что транзистор находится в одном из двух состояний: в полностью открытом (режим насыщения), или полностью закрытом (состояние отсечки).
Рассмотрим пример, где в качестве нагрузки выступает контактор типа КНЕ030 на напряжение 27В с катушкой сопротивлением 150 Ом. Индуктивным характером катушки в данном примере пренебрежем, считая, что реле будет включено раз и надолго.
Рассчитываем ток коллектора:
Ik =( Ucc – U кэнас)/ R н , где
Ik –ток коллектора
Ucc – напряжение питания (27В)
U кэнас- напряжение насыщения биполярного транзистора (типично от 0.2 до 0.8В, хотя и может прилично различаться для разных транзисторов), в нашем случае примем 0.4В
R н- сопротивление нагрузки (150 Ом)
Ik = (27-0.4)/150 = 0.18 A = 180мА
На практике из соображений надежности элементы всегда необходимо выбирать с запасом. Возьмем коэффициент 1.5
Таким образом, нужен транзистор с допустимым током коллектора не менее 1.5*0.18=0.27А и максимальным напряжением коллектор-эмиттер не менее 1.5*27=40В.
Открываем справочник по биполярным транзисторам . По заданным параметрам подходит КТ815А ( Ik макс=1.5А U кэ=40В)
Следующим этапом рассчитываем ток базы, который нужно создать, чтобы обеспечить ток коллектора 0.18А.
Как известно, ток коллектора связан с током базы соотношением
Ik = I б* h 21э,
где h 21э – статический коэффициент передачи тока.
При отсутствии дополнительных данных можно взять табличное гарантированное минимальное значение для КТ815А (40). Но для КТ815 есть график зависимости h 21э от тока эмиттера. В нашем случае ток эмиттера 180мА, этому значению соответствует h 21э=60. Разница невелика, но для чистоты эксперимента возьмем графические данные.
Для расчета базового резистора R 1 смотрим второй график, где приведена зависимость напряжения насыщения база-эмиттер ( U бэнас) от тока коллектора. При токе коллектора 180мА напряжение насыщения базы будет 0.78В (При отсутствии такого графика можно использовать допущение, что ВАХ перехода база-эмиттер подобна ВАХ диода и в диапазоне рабочих токов напряжение база-эмиттер находится в пределах 0.6-0.8 В)
Следовательно, сопротивление резистора R 1 должно быть равно:
R 1=( U вх- U бэнас)/ I б = (5-0.78)/0.003 = 1407 Ом = 1.407 кОм.
Из стандартного ряда сопротивлений выбираем ближайшее в меньшую сторону (1.3 кОм)
Если к базе подключен шунтирующий резистор (вводится для более быстрого выключения транзистора или для повышения помехоустойчивости) нужно учитывать, что часть входного тока уйдет в этот резистор, и тогда формула примет вид:
R 1= ( U вх- U бэнас)/( I б+ IR 2) = ( U вх- U бэнас)/( I б+ U бэнас/ R 2)
Так, если R 2=1 кОм, то
R 1= (5-0.78)/(0.003+0.78/1000) = 1116 Ом = 1.1 кОм
Рассчитываем потери мощности на транзисторе:
P = Ik * U кэнас
U кэнас берем из графика: при 180мА оно составляет 0.07В
P = 0.07*0.18= 0.013 Вт
Мощность смешная, радиатора не потребуется.
Ключевой режим работы характеризуется тем, что транзистор находится в одном из двух состояний: в полностью открытом (режим насыщения), или полностью закрытом (состояние отсечки).
Рассмотрим пример, где в качестве нагрузки выступает контактор типа КНЕ030 на напряжение 27В с катушкой сопротивлением 150 Ом. Индуктивным характером катушки в данном примере пренебрежем, считая, что реле будет включено раз и надолго.
Рассчитываем ток коллектора:
Ik =( Ucc – U кэнас)/ R н , где
Ik –ток коллектора
Ucc – напряжение питания (27В)
U кэнас- напряжение насыщения биполярного транзистора (типично от 0.2 до 0.8В, хотя и может прилично различаться для разных транзисторов), в нашем случае примем 0.4В
R н- сопротивление нагрузки (150 Ом)
Ik = (27-0.4)/150 = 0.18 A = 180мА
На практике из соображений надежности элементы всегда необходимо выбирать с запасом. Возьмем коэффициент 1.5
Таким образом, нужен транзистор с допустимым током коллектора не менее 1.5*0.18=0.27А и максимальным напряжением коллектор-эмиттер не менее 1.5*27=40В.
Открываем справочник по биполярным транзисторам . По заданным параметрам подходит КТ815А ( Ik макс=1.5А U кэ=40В)
Следующим этапом рассчитываем ток базы, который нужно создать, чтобы обеспечить ток коллектора 0.18А.
Как известно, ток коллектора связан с током базы соотношением
Ik = I б* h 21э,
где h 21э – статический коэффициент передачи тока.
При отсутствии дополнительных данных можно взять табличное гарантированное минимальное значение для КТ815А (40). Но для КТ815 есть график зависимости h 21э от тока эмиттера. В нашем случае ток эмиттера 180мА, этому значению соответствует h 21э=60. Разница невелика, но для чистоты эксперимента возьмем графические данные.
Для расчета базового резистора R 1 смотрим второй график, где приведена зависимость напряжения насыщения база-эмиттер ( U бэнас) от тока коллектора. При токе коллектора 180мА напряжение насыщения базы будет 0.78В (При отсутствии такого графика можно использовать допущение, что ВАХ перехода база-эмиттер подобна ВАХ диода и в диапазоне рабочих токов напряжение база-эмиттер находится в пределах 0.6-0.8 В)
Следовательно, сопротивление резистора R 1 должно быть равно:
R 1=( U вх- U бэнас)/ I б = (5-0.78)/0.003 = 1407 Ом = 1.407 кОм.
Из стандартного ряда сопротивлений выбираем ближайшее в меньшую сторону (1.3 кОм)
Если к базе подключен шунтирующий резистор (вводится для более быстрого выключения транзистора или для повышения помехоустойчивости) нужно учитывать, что часть входного тока уйдет в этот резистор, и тогда формула примет вид:
R 1= ( U вх- U бэнас)/( I б+ IR 2) = ( U вх- U бэнас)/( I б+ U бэнас/ R 2)
Так, если R 2=1 кОм, то
R 1= (5-0.78)/(0.003+0.78/1000) = 1116 Ом = 1.1 кОм
Рассчитываем потери мощности на транзисторе:
P = Ik * U кэнас
U кэнас берем из графика: при 180мА оно составляет 0.07В
P = 0.07*0.18= 0.013 Вт
Мощность смешная, радиатора не потребуется.
Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.
С чего все начиналось
Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.
Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.
Транзисторный ключ
Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.
Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:
Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор “R” здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.
Условия для работы транзисторного ключа
Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:
1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.
2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.
Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.
Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.
Базовая схема транзисторного ключа
А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:
Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже
В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!
Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉
И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.
Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:
Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.
Второй способ. Добиться того, чтобы UБЭ
Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.
Расчет транзисторного ключа
Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:
Для начала можно найти ток базы:
IБ – это базовый ток, в Амперах
kНАС – коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.
IK – коллекторный ток, в Амперах
Ну а дальше дело за малым
Это самый простой расчет без всяких заморочек.
Расчет транзисторного ключа на практике
Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.
Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.
Транзистор КТ819Б структуры NPN
А вот и его цоколевка
Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.
Лампочка при питании 6 В светит примерно вот так:
А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.
0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.
Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148
Итак, находим ток базы по формуле
Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН
P – это мощность в Ваттах
UКЭ – напряжение между коллектором и эмиттером, В
IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А
Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор
Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:
Теперь считаем базовый резистор по формуле:
Берем ближайший из ряда, то есть 1 кОм.
Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.
Собираем схему и смотрим, как она работает
В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)
Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.
Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.
Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.
Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.
Применение транзисторного ключа в связке с МК
Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:
В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.
Заключение
В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.