Содержание
При отделочных работах и строительстве бывает нужна четкая геометрия: перпендикулярные стены и иные конструкции, требующие прямого угла в 90 градусов. Обыкновенный угольник не может позволить проверить или разметить углы со сторонами в несколько метров. Описываемый же метод превосходно подходит для разметки или проверки любых углов – длинна сторон не ограничена. Основной инструмент для измерений – рулетка.
Мы будем рассматривать точную разметку прямого угла, а также метод проверки уже размеченных углов на стенах и других объектах.
Теорема Пифагора
Теорема основана на утверждении, что у прямоугольного треугольника сумма квадратов длин катетов равна квадрату длины гипотенузы. В виде формулы записывается это так:
Стороны a и b – катеты, между которыми угол равен ровно 90 градусов. Следовательно, сторона c – гипотенуза. Подставляя в эту формулу две известные величины, мы можем вычислить третью, неизвестную. А следовательно можем размечать прямые углы, а также проверять их.
Теорема Пифагора известна еще под названием "египетский треугольник". Это треугольник со сторонами 3, 4 и 5, причем совершенно не важно, в каких единицах длинны. Между сторонами 3 и 4 – ровно девяносто градусов. Проверим данное утверждение вышеприведенной формулой: a²+b²=c² = (3×3)+(4×4) = 9+16 = (5×5) = 25 – все сходится!
А теперь применим теорему на практике.
Проверка прямого угла
Начнем с самого простого – проверки прямого угла с помощью теоремы Пифагора. Самым частым примером в отделке и строительстве является проверка перпендикулярности стен. Перпендикулярные стены – это стены, расположенные друг к другу под прямым углом 90°.
Итак, берем любой проверяемый внутренний угол. На стенах (на одной высоте) или на полу отмечаем на обоих стенах отрезки произвольных длин. Длинна этих отрезков произвольная, по возможности нужно отмечать как можно больше, но чтобы между отметками на стенах удобно было мерить диагональ. Например, мы отметили 2,5 метра (или 250 см.) на одной стене и 3 метра (или 300 см.) на другой. Теперь длину отрезка каждой стены возводим в квадрат (умножаем саму на себя) и получившиеся произведения складываем. Выглядит это так: (2,5×2,5)+(3×3)=15,25 – это диагональ в квадрате. Теперь нужно извлечь из этого числа квадратный корень √15,25≈3,90 – 3,9 метра должна составлять диагональ между нашими отметками. Если измерение рулеткой показывает другую длину диагонали – проверяемый угол развернут и имеет отклонение от 90°.
Калькулятор расчета диагонали прямого угла
Извлечение квадратного корня никогда меня не привлекало – простому человеку не обойтись без калькулятора, к тому же, не на всех мобильных устройствах калькуляторы умеют извлекать его. Поэтому можно пользоваться упрощенным методом. Нужно лишь запомнить: у прямого угла со сторонами ровно 100 сантиметров, диагональ равна 141,4 см. Таким образом, у прямого угла со сторонами 2 м. – диагональ равна 282,8 см. То есть на каждый метр плоскости приходится 141,4 см. У этого метода один недостаток: от измеряемого угла нужно откладывать одинаковые расстояния на обеих стенах и отрезки эти должны быть кратны метру. Не буду утверждать, но по моей скромной практике – это гораздо удобнее. Хотя не стоит забывать о первоначальном способе совсем – в некоторых случаях он очень актуален.
Сразу же возникает вопрос: какое отклонение от вычисленной длинны диагонали считать нормой (погрешностью), а какое нет? Если проверяемый угол с отмеченными сторонами по 1 м. будет 89°, то диагональ уменьшится до 140 см. Из понимания этой зависимости можно сделать объективный вывод, что погрешность диагонали 141,4 см. в несколько миллиметров не даст отклонения в один целый градус.
Как проверить внешний угол? Проверка внешнего угла по сути не отличается, нужно лишь продлить линии каждой стены на полу (или земле, при помощи шнура) и получившийся внутренний угол измерить обычным способом.
Как разметить прямой угол рулеткой
Разметка может основываться как на общей теореме Пифагора, так и на принципе "египетского треугольника". Однако это только в теории линии просто чертятся на бумаге, "ловить" же все выбранные размеры растянутыми шнурами или линиями на полу – задача посложнее.
Поэтому я предлагаю упрощенный способ, основанный на диагонали 141,4 см. у треугольника со сторонами 100 см. Вся последовательность разметки изображена на картинках ниже. Важно не забывать: диагональ 141,4 см. нужно умножать на количество метров в отрезке А-Б. Отрезки А-Б и А-В должны быть равны и соответствовать целому числу в метрах. Картинки увеличиваются по клику!
Как разметить острый угол
Гораздо реже возникает надобность в создании острых углов, в частности 45°. Для формирования подобных фигур формулы более сложные, однако это не самое проблематичное. Гораздо сложнее свести все линии, начерченные или натянутые шнурами – дело это непростое. Поэтому я предлагаю использовать упрощенный метод. Сначала размечается прямой угол 90°, а затем диагональ 141,4 делится на нужное количество равных частей. Например, чтобы получить 45°, диагональ нужно поделить пополам и от точки А провести линию через место деления. Таким образом мы получим два угла по 45 градусов. Если поделить диагональ на 3 части, то получится три угла по 30 градусов. Думаю алгоритм вам понятен.
Собственно я рассказал все, что мог рассказать, надеюсь все изложил понятным языком и у вас больше не возникнет вопросов как размечать и проверять прямые углы. Стоит добавить, что уметь делать это должен любой отделочник или строитель, ведь полагаться на строительный угольник небольшого размера – непрофессионально.
Древнегреческие геометры и, в частности Евклид, старались зря, их знания до советских строителей так и не дошли. В том смысле, что прямоугольных помещений в советских домах не бывает. А бывают в лучшем случае в виде параллелограмма, усеченной трапеции или ромба, а в худшем и наиболее распространенном в виде неправильного четырехугольника. Это довольно часто затрудняет качественную отделку помещений. Приходится искать прямой угол самому. Сделать это в общем-то несложно.
Разметку проще всего производить на полу. Для этого Вам понадобятся:
- Маркер, мел или карандаш
- Строительный уровень, суровая нитка или строительный шнур.
- Рулетка.
С помощью строительного уровня или отвеса (проще – с помощью уровня, точнее – с помощью отвеса) определите выпирающие участки стен. В этих местах перенесите вертикальные отметки на пол. Проведите через 2 отметки вдоль каждой стены прямые линии так, чтобы остальные отметки (если они у Вас есть) остались между линией и стеной.
Обычно прямая линия вдоль одной из 2 самых широких стен принимается за основу, если нет каких либо других точек отсчета. В этом случае площадь помещения при дальнейшей отделке будет уменьшена минимально.
Отмерьте от одного из углов с помощью рулетки 1 м и поставьте отметку на линии. Сделайте то же самое на перпендикулярной (возможно, не совсем) линии.
Соедините полученные отметки так, чтобы получился треугольник.
Измерьте расстояние между полученными отметками.
Если стены перпендикулярные это расстояние должно равняться
1.414 м более точно 1.41421356 м, но такая точность вам не понадобится.
Если расстояние (гипотенуза треугольника) больше, то у Вас вместо прямого угла между стенами тупой. Для того, чтобы получить прямой угол, приложите начало рулетки к точке пересечения линий в углу и нарисуйте небольшую дугу радиусом 1 м. Затем приложите начало рулетки к отметке на линии вдоль стены принятой за основу и нарисуйте небольшую дугу радиусом 1.414 м. Проведите через точку пересечения дуг и точку пересечения линий в углу прямую линию. Эта новая линия и будет контуром стены. Если это для Вас слишком сложно, то просто отмерьте на гипотенузе 1.414 м от отметки у той стены которую вы приняли за основу. Проведите прямую линию через полученную отметку и точку пересечения линий в углу. В этом случае Вы получите не прямой угол, но все же намного ближе к прямому, чем тот который был.
Если расстояние (гипотенуза треугольника) меньше, то у Вас вместо прямого угла между стенами острый. Для того, чтобы получить прямой угол, отступите от отметки на линии вдоль стены, принятой за основу, несколько сантиметров. Нарисуйте на полу небольшие дуги по принципу, изложенному в предыдущем пункте. Полученную линию можно перенести ближе к стене. Главное условие – отметки выпирающих участков стены должны остаться между новой линией и стеной.
Если Вы не совсем поняли этот текст, то рисунок поможет Вам лучше разобраться:
От полученных 2 сторон прямоугольника методом параллельного переноса определяются оставшиеся 2 стороны.
Надеюсь, уважаемый читатель, информация, представленная в данной статье, помогла вам хоть немного разобраться в имеющейся у вас проблеме. Также надеюсь на то, что и вы поможете мне выбраться из той непростой ситуации, в которую я попал недавно. Даже и 10 рублей помощи будут для меня сейчас большим подспорьем. Не хочу грузить вас подробностями своих проблем, тем более, что их хватит на целый роман (во всяком случае мне так кажется и я даже начал его писать под рабочим названием "Тройник", на главной странице есть ссылка), но если я не ошибся в своих умозаключениях, то роману быть и вы вполне можете стать одним из его спонсоров, а возможно и героев.
После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"
Для терминалов номер Яндекс Кошелька 410012390761783
Для Украины – номер гривневой карты (Приватбанк) 5168 7422 0121 5641
Кошелек webmoney: R158114101090
- Элементы конструкции . Стены . Перегородки
- Элементы конструкции . Стены . Несущие стены
- Технологии выполнения работ . Общие рекомендации
- Расчет конструкций . Основы прикладной геометрии
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).
Многие строители сталкиваются с такой проблемой — как найти угол 90 градусов с помощью строительной рулетки и карандаша?
Давайте рассмотрим как на практике любой желающий в течение нескольких минут может с помощью строительной рулетки и карандаша сделать точный угольник с прямым углом, то есть 90°.
Технология получения треугольника с прямым углом
1. Для начала определимся с системой исчесления, к примеру будем считать в «см».
2. Придумываем любое число, например 20.
Примечание: Здесь может быть любое число на ваше усмотрение. Чем больше число, тем больше размер самого треугольника.
3. Берем комбинацию чисел «3, 4, 5» и последовательно умножаем каждое из этих чисел на придуманное нами число 20.
4. Получаются следующие числа: 60, 80, 100.
5. Присваиваем их поочередно к сторонам треугольника:
- Первый кактет 60 см
- Второй кактет 80 см
- Гипотенуза 100 см.
Как сделать самому угольник с прямым углом за 5 минут?
1. Соединяем между собой две ровные деревянные рейки, так чтобы одна из них была перпендикулярна другой.
2. Измеряем два катета по выше изложенной системе.
3. Прибиваем деревянную рейку к первой метке.
4. Измеряем гипотенузу и фиксируем на втором катете.
5. Проверяем все размеры и во всех местах дополнительно фиксируем.