Содержание
Содержание статьи
- Что такое плотность тока
- Что такое электрический ток
- В чем измеряется плотность
Плотность постоянного электрического тока можно сравнить с плотностью газа, текущего в трубе под давлением. Плотность тока равна отношению силы тока в амперах (А) к площади поперечного сечения проводника в квадратных миллиметрах (Поз. 1 на рисунке). От материала проводника ее значение не зависит. Сечение проводника берется по нормали (перпендикулярно) к его продольной оси.
Если, допустим, провод имеет диаметр D = 1 мм, то площадь его поперечного сечения будет S = 1/4(πD^2) = 3,1415/4 = 0,785 кв. мм. Если по такому проводу течет ток I в 5 А, то его плотность j будет равна j = I/S = 5/0,785 = 6,37 А/кв. мм.
Значения плотности тока в технике
Хотя само значение плотности тока от материала проводника не зависит, в технике его выбирают, исходя из его удельного электрического сопротивления и длины провода. Дело в том, что при большой плотности тока проводник с ним нагревается, его сопротивление от этого возрастает, и потери электроэнергии в проводке или обмотке увеличиваются.
Однако, если взять провода слишком толстыми, то и вся проводка получится чрезмерно дорогой. Поэтому расчет бытовой проводки ведут, исходя из так называемой экономической плотности тока, при которой общие долговременные расходы на электросеть минимальны.
Для квартирной проводки, провода в которой не очень длинные, берут значение экономической плотности в пределах 6-15 А/кв. мм. в зависимости от длины проводов. Медный провод диаметром 1,78 мм (2,5 кв. мм) в ПВХ изоляции, замурованный под штукатурку, выдержит и 30, и даже 50 ампер. Но при потребляемой квартирой мощности в 5 кВт плотность ток в нем будет (5000/220) = 23 А, а его плотность в проводке – 9,2 А/кв. мм.
Экономическая плотность тока в линиях электропередач много ниже, в пределах 1-3,4 А/кв. мм. В электрических машинах и трансформаторах промышленной частоты 50/60 Гц – от 1 до 10 А/кв. мм. В последнем случае ее вычисляют, исходя из допустимого нагрева обмоток и величины электрических потерь.
О плотности тока высокой частоты
Плотность тока высоких частот (теле и радиосигналы, например) рассчитывают с учетом так называемого скин-эффекта (skin – по-английски «кожа»). Суть его в том, что электромагнитное поле оттесняет ток к поверхности провода, поэтому для получения нужной его плотности приходится брать диаметр провода больше, а чтобы не тратить лишней меди, делать его пустотелым, в виде трубки.
Скин-эффект имеет значение не только при передаче больших мощностей. Если, допустим, сделать разводку кабельного телевидения по квартире слишком тонким коаксиальным кабелем, то потери в нем из-за скин-эффекта во внутреннем проводе могут оказаться чрезмерно велики. Аналоговые каналы при этом будут рябить, а цифровые – рассыпаться в квадратики.
Глубина скин-эффекта зависит от частоты сигнала, и плотность тока при этом плавно падает до нуля в центре провода. В технике для упрощения расчетов глубину залегания скин-поверхности считают там, где плотность тока падает в 2,72 раза по сравнению с поверхностной (Поз. 2 на рисунке). Величина 2,72 выводится в технической электродинамике из соотношения электрической и магнитной постоянной, что облегчает расчеты.
Плотность тока смещения
Ток смещения довольно сложное понятие электродинамики, но именно благодаря ему переменный ток проходит через конденсатор, и антенна излучает сигнал в эфир. Ток смещения тоже имеет свою плотность, но определить ее не так-то просто.
Даже в очень хорошем конденсаторе электрическое поле слегка «выпирает» в стороны между пластинами (Поз. 3 на рисунке), поэтому к пересекаемой током смещения поверхности нужно давать некоторую добавку. Для конденсатора ее величиной еще можно пренебречь, но если речь об антенне, то там эта виртуальная, пересекаемая током смещения поверхность значит все.
Чтобы найти плотность тока смещения, приходится решать сложные уравнения электродинамики или производить компьютерное моделирование процесса. К счастью, для многих случаев инженерной практики знать ее величину не требуется.
.
Плотность тока в проводнике
,
где S – площадь поперечного сечения проводника; – средняя скорость упорядоченного движения зарядов в проводнике; n – концентрация зарядов.
Электродвижущая сила, действующая в цепи,
,
где . – работа сторонних сил; q – единичный положительный заряд,
(замкнутая цепь),
(участок цепи 1 – 2),
где – напряженность поля сторонних сил.
Разность потенциалов между двумя точками цепи
,
где – напряженность электростатического поля;
– проекция вектора
на направление элементарного перемещения
.
Напряжение на участке 1 – 2 цепи
,
где (j1 – j2) – разность потенциалов между точками цепи; – ЭДС, действующая на участке 1 – 2 цепи.
Сопротивление однородного линейного проводника, проводимость G
проводника и удельная электрическая проводимость g вещества проводника:
,
где r – удельное электрическое сопротивление; S – площадь поперечного сечения проводника; – его длина.
(для однородного участка цепи),
(для неоднородного участка цепи),
(для замкнутой цепи),
где U – напряжение на участке цепи; R – сопротивление цепи (участка цепи); (j1 – j2) – разность потенциалов на концах участка цепи; e12 – ЭДС источников тока, входящих в участок; e – ЭДС всех источников тока в цепи.
Зависимость удельного сопротивления rи сопротивления R от температуры
,
где r и r, R и R – соответственно удельное сопротивление и сопротивление проводника при t и 0°С; a – температурный коэффициент сопротивления, для чистых металлов (при не очень низкой температуре) близкий к .
Закон Ома в дифференциальной форме
,
где – плотность тока;
– напряженность электростатического поля; g – удельная электрическая проводимость вещества проводника.
,
где U – напряжение, приложенное к концам однородного проводника; I – сила тока в проводнике; R – сопротивление проводника; dq – заряд, переносимый через сечение проводника за промежуток времени dt.
,
где U – напряжение, приложенное к концам однородного проводника; I – сила тока в проводнике; R – его сопротивление.
Закон Джоуля – Ленца
,
где dQ – количество теплоты, выделяющееся в участке цепи за промежуток времени dt; U – напряжение, приложенное к концам участка цепи; I – сила тока в цепи; R – сопротивление участка.
Закон Джоуля – Ленца в дифференциальной форме
,
где w– удельная тепловая мощность тока; j – плотность тока; Е – напряженность электростатического поля; g – удельная электрическая проводимость вещества.
Контактная разность потенциалов на границе двух металлов 1 и 2
где A1, A2 – работы выходов свободных электронов из металлов; k – постоянная Больцмана; n1, n2 – концентрации свободных электронов в металлах.
Термоэлектродвижущая сила в цепи из разнородных проводников, контакты между которыми имеют различные температуры
где k – постоянная Больцмана; е – элементарный заряд; (Т1 – Т2) – разность температур спаев.
Формула Ричардсона – Дешмана
где – плотность тока насыщения термоэлектронной эмиссии; С – постоянная, теоретически одинаковая для всех металлов; А – работа выхода электрона из металла.
Соединение n одинаковых элементов (источников тока) электрической цепи постоянного тока:
Схема электрической цепи | Закон Ома |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
r – внутреннее сопротивление каждого источника; R – внешнее сопротивление цепи; e – ЭДС источника.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8460 – | 7349 –
или читать все.
91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Электрическое поле воздействует на заряды, в результате, они начинают упорядоченно перемещаться. Такое перемещение получило определение электрического тока. Как правило, заряды двигаются в какой-либо среде, называемой проводником, и являются носителями тока.
Одной из основных характеристик движения зарядов является плотность тока, формула которого описывает электрический заряд, переносимый за 1 секунду через сечение проводника, которое перпендикулярно направлению этого тока.
Чем определяется плотность тока
Понятие плотности тока определяется количеством электричества, протекающим через сечение проводника в течение одной секунды. Направление электротока является перпендикулярным сечению проводника.
Если взять однородный проводник цилиндрической формы, в котором ток имеет равномерное распределение по всему сечению, то его плотность будет выражаться в виде формулы: J = I / S, где I является силой тока, а S – площадью поперечного сечения. Единицей измерения этой величины служит А/м2 (ампер на метр квадратный). Данная величина является векторной. Ее направление совпадает с направлением напряженности электрического поля.
Использование плотности тока на практике
Очень часто возникает вопрос о возможности использования конкретного провода для тех или иных целей. То есть, способен ли он выдержать определенную нагрузку. В этих случаях, очень важно определить плотность электротока с допустимой величиной.
Данный показатель очень важен, поскольку в каждом проводнике возникает сопротивление току, протекающему через него. Происходят потери тока, из-за чего проводник начинает нагреваться. При слишком больших потерях, наступает критическое нагревание, вызывающее расплавление проводника. Чтобы исключить подобные ситуации, каждому прибору или потребителю устанавливается наиболее оптимальная плотность тока, формула которой позволит рассчитать нужное сечение провода.
Когда возникает необходимость выбрать нужное сечение провода или кабеля, необходимо учитывать допустимое значение плотности электротока. Для практических расчетов во время проектирования используются специальные таблицы и формулы, позволяющие получить желаемый результат.
Для разных металлов существуют различные значения плотности. В настоящее время используются только медные провода, в которых плотность электротока не должна превышать 6-10 А/мм2. Это особенно актуально для долговременной эксплуатации, когда проводке обеспечивается облегченный режим. Допускается эксплуатация и при повышенных нагрузках, только на очень короткое время.