Содержание
- 1 Расчет обогрева труб нагревательным кабелем
- 2 Результаты расчета системы защиты трубопровода от промерзания
- 3 Подбор греющего кабеля
- 4 Расчет длины резистивных и саморегулирующихся кабелей для трубопровода
- 5 От чего зависит стартовый ток
- 6 От чего зависит величина стартового тока
- 7 Расчет пускового тока греющего кабеля
- 8 Способы уменьшения стартового тока
- 9 Подбор сечения силового кабеля для системы обогрева
- 10 Проблемы из-за неправильного расчета пускового тока
САМОРЕГУЛИРУЮЩИЙСЯ
ГРЕЮЩИЙ КАБЕЛЬ
FINE KOREA
– ФИТИНГИ
– МУФТЫ
– ТЕРМОРЕГУЛЯТОРЫ
- ГЛАВНАЯ
Информация
Расчет обогрева труб нагревательным кабелем
Результаты расчета системы защиты трубопровода от промерзания
длина трубы: м
наружный диаметр трубы: мм
температура внутри трубы: °С
температура окружающей среды: °С
теплоизоляция: коэф.теплопроводности: Вт/м°С, толщина: мм
рекомендуемая мощность для данной длины трубы: Вт
* Обращаем ваше внимание на то, что необходимая вам длина кабеля может превышать максимально допустимую для определеного типа кабеля длину электроцепи. В этом случае вам будет необходимо использовать несколько отрезков. Максимально допустимая длина электроцепи указана в таблице в предпоследней колонке.
* При применении теплоизоляции отличающейся от заложенной в калькулятор, Вы можете самостоятельно ввести коэффициент теплопроводности материала.
Калькулятор позволяет выполнить приблизительный расчет стоимости, для точного расчета обратитесь к дилерам продукции FINE KOREA в вашем городе, либо к менеджерам отдела продаж
© 2013, «FINE KOREA»
Вся информация (включая цены) на сайте носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 (2) Гражданского кодекса РФ.
Если водопроводные трубы расположены ниже уровня промерзания грунта или в неотапливаемых хозяйственных помещениях, зимой неизбежно происходит образование ледяных пробок. При этом магистраль часто оказывается повреждена, подача воды останавливается. Для предотвращения подобных неприятностей принято использовать теплоизоляционные материалы, но сами по себе они часто недостаточно эффективны. Лучшим выходом является монтаж кабельного обогрева. Он защитит систему от замерзания даже в самые суровые зимы. Перед покупкой следует правильно рассчитать нагревательный кабель.
Преимущества кабельного обогрева:
- Защита труб от промерзания, разрывов, внешнего обледенения.
- Долговечность и простота эксплуатации.
- Экономичный расход электроэнергии.
- Универсальность (подходит для наземных и подземных коммуникаций).
- Эффективное удаление конденсата и продление срока службы утеплителя.
- Снижение затрат на обслуживание водопроводной магистрали.
Подбор греющего кабеля
Подбирать материалы для обогрева такого типа следует индивидуально, учитывая особенности трубопровода. Применяют две основные разновидности кабелей.
Резистивный – выпускаются одно- и двужильные модели. Токопроводящая жила покрыта надежной изоляцией и имеет одинаковое сопротивление на любом участке. Изделие отличается доступной ценой, но требует установки термостата.
Саморегулирующийся – в основе такого кабеля лежит полупроводниковая матрица с датчиками, способная изменять сопротивление на разных участках. Это позволяет осуществлять обогрев трубы по всей длине с учетом температуры окружающей среды. При этом исключена вероятность перегорания кабеля. Данная продукция дороже, но значительно проще в эксплуатации, не нуждается в монтаже термостата. В отличие от резистивного кабеля, саморегулирующийся можно резать на куски необходимого размера.
Кабели из нашего каталога
Также при подборе греющего элемента необходимо учитывать такие факторы:
- протяженность сети – чем длиннее водопровод, тем выше риск возникновения перегрева на каком-либо участке;
- расположение трубы – если магистраль уже проложена под землей или доступ к ней затруднен по другим причинам, это повлияет на выбор кабеля и процесс его монтажа;
- выбранный способ укладки греющего элемента – для прокладки кабеля снаружи (вдоль или по спирали) можно подобрать продукцию в любой оболочке, а при монтаже внутри магистрали потребуется продукция с инертной оплеткой;
- материал и диаметр водовода – кабельный обогрев подходит для всех типов труб, но максимально допустимая мощность будет отличаться;
- толщина и проводимость теплоизоляции – чем меньше потери тепла, тем ниже требования к мощности кабеля.
Расчет длины резистивных и саморегулирующихся кабелей для трубопровода
Чтобы определить длину кабеля, необходимо сначала просчитать тепловые потери магистрали в холодное время года. Для этого используют формулу:
- W – коэффициент теплопроводности кабельной изоляции;
- L – длина трубы;
- tвн – температура воды в трубе;
- tнар – температура окружающего воздуха или грунта;
- D – диаметр трубы вместе с изоляцией;
- d – внешний диаметр трубы без изоляции;
- 1,3 – коэффициент запаса по мощности.
Чтобы получить длину кабеля в метрах, необходимую для вашей магистрали, необходимо использовать формулу:
- Q – коэффициент теплопотерь;
- P – удельная мощность кабельной продукции.
Это пример расчета длины кабеля для прямого отрезка трубы. При наличии дополнительных элементов (соединительных фланцев, задвижек, кранов, опор), а также поворотов магистрали, необходимо сделать запас по длине, поскольку такие места нуждаются в усиленном обогреве. Это же относится к местам соединения двух отрезков кабеля, если такие связки присутствуют. Чтобы определить количество дополнительного кабеля, необходимо учесть толщину трубы, количество и тип элементов. Удобнее всего взять соответствующее значение из специальной таблицы.
Данные расчеты будут полезны тем, кто выбрал наружный монтаж кабеля. Когда речь идет об установке греющего элемента внутри водопровода, расчет будет предельно прост – вам потребуется отрезок длиной до ближайшего элемента запорной арматуры. Кабель не должен мешать работе встроенных в трубы регуляторов, клапанов, кранов.
Факторы, учитываемые при расчете теплопотерь трубы
Теплопотери неизбежны даже при обеспечении качественной изоляции трубы от внешнего холода. Это напрямую влияет на мощность кабеля и количество его витков при монтаже снаружи водопровода. На теплопотери влияет сразу несколько показателей:
- толщина и коэффициент теплопроводности термоизоляционных материалов – чаще всего применяют минвату и пенополистирол с проводимостью 0,055 и 0,04 Вт/м С соответственно;
- минимально возможная зимой температура окружающей среды – параметры будут отличаться для разных регионов страны и расположения трубы (внутри помещения, на улице, в грунте);
- диаметр и длина трубы – чем больше площадь магистрали, тем охотнее она отдает тепло, требуя использования кабеля более высокой мощности;
- наличие опор, подвесов и арматуры – первые создают своеобразные мостики холода, а запорные и регулирующие элементы нуждаются в усиленном обогреве.
Все это влияет на рекомендуемую мощность греющего кабеля. Для экономии в дальнейшем стоит позаботиться о качественной теплоизоляции труб. Желательно поверх мягкого материала зафиксировать жесткий защитный кожух. Это особенно актуально для магистралей, находящихся на открытом воздухе и в грунте.
Бытовые системы обогрева обычно имеют мощность до 17 Вт/м, поэтому при некачественном утеплении водопровода или полном отсутствии изоляции монтаж кабеля может быть нецелесообразным. Во втором случае предпочтительно сначала обеспечить защиту трубы от холода. Также теплоизоляция может монтироваться одновременно с кабелем, но предварительно все равно придется определиться с материалом.
Подбор кабеля при помощи таблицы теплопотерь трубы
Таблица удельных теплопотерь поможет вам упростить расчеты длины и мощности греющего кабеля. Она позволяет получить упрощенное, но достаточно адекватное представление о расходе энергии обогрева. Чтобы определить необходимый параметр, нужно знать несколько исходных значений:
- толщина теплоизоляции трубы в мм;
- разница температуры теплоносителя внутри магистрали и минимальной для вашего региона температуры воздуха;
- диаметр трубы в мм.
Дополнительно можно воспользоваться таблицей коэффициентов запаса мощности для кабелей разных типов. Обратите внимание, что выбранный нагревательный элемент должен обеспечивать приток тепла, который больше его потери. В противном случае возможно промерзание магистрали, несмотря на уложенный кабель. Именно поэтому так важно провести указанные расчеты. Обогрев, монтируемый внутри водопровода, может иметь меньшую мощность, поскольку он непосредственно соприкасается с водой, нагревать сначала магистраль не требуется. Но такой способ подходит только для труб небольшой толщины. Если кабель укладывается снаружи, на его минимальную мощность и требуемую длину влияет также способ намотки и крепления. Существует несколько вариантов расположения греющего элемента.
- Спираль – позволяет равномерно прогревать магистраль, поддерживая заданную температуру. В этом случае имеет место самофиксация провода, но его все равно необходимо подстраховать стеклопластиковой или алюминиевой клейкой лентой, особенно на вертикальных трубах.
- Параллель – самый простой способ монтажа, оптимальный для водовода небольшого диаметра.
- Змеевик – данный способ укладки подходит для магистрали большой толщины. Чередующиеся петли обеспечивают очень быстрый прогрев переносимой среды.
Пусковой (стартовый) ток – это максимальный ток, возникающий в момент подачи питания на систему. Этот параметр необходимо учитывать при проектировании, а точнее – при расчете максимальной длины отрезков кабеля.
От чего зависит стартовый ток
- Температуры включения . Чем ниже температура окружающей среды, при которой происходит включение системы обогрева, тем выше пусковой ток и тем больше стартовая мощность.
- Длины нагревательного кабеля . Чем больше длина секции, тем больше СТ системы. Для резистивного кабеля он определяется внутренним удельным сопротивлением Ом/м нагревательной жилы и рассчитывается, и контролируется при изготовлении секции на заводе. Саморегулируемый нагревательный кабель можно условно представить как множество параллельных резистеров (сопротивлений), подключенных к одному источнику питания. Сопротивление будет уменьшаться при увеличении длины линии, и, соответственно, увеличится пусковой ток.
От чего зависит величина стартового тока
Мощности греющего кабеля. Чем больше удельная мощность кабеля (Вт/м), тем больше СТ.
Особенности конструкции нагревательного кабеля. Резистивный греющий кабель из-за особенности конструкции имеет небольшой СТ, который на несколько процентов превышает рабочее значение тока.
Саморегулируемый кабель имеет достаточно большой СТ, который может увеличиваться в 1.5 -5 и более раз от своего рабочего значения. Причина – использование в конструкции проводящей матрицы с PTC-коэффициентом, меняющей свое электрическое сопротивление в зависимости от температуры окружающей среды.
В «холодном» состоянии кабель имеет небольшое сопротивление, которое к тому же зависит от температуры окружающей среды. При подаче питания на кабель, он начинает разогреваться, его сопротивление начинает расти, ток в цепи питания уменьшается. Коэффициент стартового тока зависит от компонентного состава и применяемых технологий при производстве матрицы кабеля.
У каждой марки нагревательного кабеля своя величина стартового тока. Производители редко указывают эту информацию в технических характеристиках. Этот параметр является условной величиной и при различных условиях один и тот же кабель может иметь разное значение СТ. Аналогично производители саморегулирующегося кабеля не нормируют его удельное сопротивление Ом/м.
График зависимости СТ кабеля Samreg-40-2CR* от температуры окружающей среды
*график построен на основе испытаний
Пиковая нагрузка приходится на первые 3-30 секунд после включения, в этот момент СТ может превышать номинальное значение в 2-5 раз. Примерно через 5-10 минут происходит полная стабилизация и выход греющего кабеля на номинальную мощность.
Расчет пускового тока греющего кабеля
Грубо рассчитать максимальный пусковой ток нагревательной секции можно исходя из общей длины греющего кабеля в системе и его удельной мощности.
Пример расчета максимального стартового тока греющего кабеля
Имеется секция саморегулирующегося кабеля удельной мощностью 30 Вт/м и длиной 50 м. Номинальная мощность секции при температуре +10°С составляет Pном=30Вт/м*50м=1500Вт. Это мощность уже разогретой секции. Если на кабель в «холодном» состоянии подать питание, то его мощность будет в несколько раз выше номинального значения. Для расчетов мы принимаем коэффициент стартового тока равный 2.5-3 для кабелей марки Samreg и Alphatrace. Коэффициент определен в ходе экспериментов с кабелем данных марок, а также изучения их физических и электротехнических свойств. У греющих кабелей иных производителей данный коэффициент может отличаться как в большую, так и меньшую сторону.
Тогда, стартовая (пусковая) мощность в нашем примере равна Pпуск=3хPном=4500Вт, пусковой ток Iпуск=4500/220=20,45 А.
По найденному значению СТ осуществляется выбор автоматических и дифференциальных выключателей для защиты нагревательной секции, а также тип и сечение силового питающего кабеля. Для секции, приведенной в примере, необходим дифференциальный автомат на номинальный ток Iном=25А с дифференциальным током Iут=30мА
Способы уменьшения стартового тока
Большая величина СТ является нежелательной для питающей сети, так как приходится использовать автоматы с большим номинальным током. Кроме того, подбирается силовой кабель увеличенного сечения.
Существует несколько способов снижения СТ системы:
Последовательное подключение
Последовательное подключение к питающей сети нагревательных секций , которое обеспечивается с помощью установки реле выдержки времени. Это устройство применимо в системе, состоящей из нескольких линий (нагревательных секций). Оно позволяет включать каждую линию с определенным временным интервалом (обычно около 5 минут). При данном способе подключения ток в нагревательной секции уменьшится до рабочего (номинального значения) через 5 минут после подачи питания. После этого можно осуществлять включение следующей линии. Таким образом, суммарный СТ всей системы обогрева равен:
где Iном1, Iном2… – номинальные токи нагревательных секций соответственно 1ой, 2ой и т.д.
Iпуск.n – СТ секции, которая включается в сеть последней.
Чем больше секций включается по такой схеме (т.е. чем больше ступеней включения), тем больше пусковой ток будет стремиться к номинальному току для данной системы. Так, если по такой схеме включить хотя бы 3 группы (одна группа включается напрямую, 2 другие через реле времени через 5 и 10 минут соответственно) при условии равномерного распределения мощностей по группам, то пусковой ток можно снизить почти на 50%.
Пример принципиальной схемы шкафа управления с реле времени
Видео применения реле времени для последовательного включения линий обогрева
Устройство плавного пуска
Устройство в течение всего времени холодного запуска системы (порядка 10-12 минут) поддерживает значение тока на уровне не выше номинального. В этом случае можно использовать силовые и дифавтоматы, рассчитанные на номинальный ток секции. Кроме того, не придется применять питающий кабель с увеличенным сечением. Принцип работы устройства подробно описан в паспорте.
Согласно максимальной стартовой мощности подбирается также силовой кабель подходящего сечения.
Подбор сечения силового кабеля для системы обогрева
Таблица выбора сечения кабеля по току и мощности с медными жилами
Таблица выбора сечения кабеля по току и мощности с алюминиевыми жилами
Неправильный расчет СТ приводит к выходу из строя системы защиты и управления, что может стать причиной аварийных ситуаций на обогреваемом объекте.
Проблемы из-за неправильного расчета пускового тока
Наиболее частые проблемы, возникающие по причине неправильного расчета пускового тока и в соответствии с этим неправильного выбора оборудования:
Срабатывания автоматов защиты и иных защитных устройств
Срабатывания автоматов защиты и иных защитных устройств при включении системы обогрева из «холодного» состояния. Фактически автоматы защиты нагревательных секций выключатся в первые 10-100 секунд после подачи на них питания. Автомат отключается по перегрузке, срабатывает его тепловой расцепитель. Автомат может работать некоторое время в режиме перегрузки, но ввиду затяжного характера процесса снижения СТ, его запаса не хватает. Для устранения этой проблемы приходится выбирать автомат на большее значение номинального тока.
Данная проблема может быть не выявлена на этапе тестирования или запуска системы, так как максимальный пусковой ток увеличивается при понижении температуры окружающей среды. Если систему тестировали до наступления минимальных температур ошибка возникнет только при включении системы в холодное время года (например, в мороз).
Перегрев силового кабеля
Перегрев силового кабеля возникает по причине неправильного подбора его сечения. Из-за большой длительности пускового процесса греющего кабеля высокое значение СТ нагревает жилы силового кабеля. При этом кабель может расплавиться, возникнуть короткое замыкание и даже пожар на объекте обогрева.
При расчетах системы обогрева необходимо помнить, что в первую очередь максимальный стартовый ток зависит от длины секции кабеля.
Превышение допустимой длины приводит не только к увеличению СТ, но и к преждевременному износу системы.