«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».
А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один – массогабаритные показатели. Всё остальное – сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.
Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.
Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное – при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.
По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.
И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.
Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание "что-то подправить в консерватории". Объясняется это желание просто – существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.
А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.
Рис.1
Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней – просто нечему.
Ну и наконец, переходим к расчёту импульсного трансформатора.
Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных – EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.
Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .
Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.
Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.
Мощность блока питания, Вт |
Размеры кольца, мм ; (габаритная мощность, Вт) |
Количество витков первичной обмотки |
Индуктивность обмотки, мГн |
25 | R 20×12×6 2000НМ (33,8 Вт) R 22,1×13,7×6,35 №87 (51,5 Вт) |
R 22,1×13,7×7,9 №87 (63,9 Вт)
R 27×18×6 2000НМ (85,3 Вт)
R 32,0×20,0×6,0 №27 (141 Вт)
R 29,5×19,0×14,9 №87 (297 Вт)
R 30,5×20,0×12,5 №87 (265 Вт)
R 34,0×20,5×10,0 №87 (294 Вт)
R 34,0×20,5×12,5 №87 (371 Вт)
R 38×24×7 2000НМ (278 Вт)
R 38×24×14 2000НМ (565 Вт)
R 40×25×11 2000НМ (500 Вт)
R 45×28×16 2000НМ (1036 Вт)
R 45×28×24 2000НМ (1580 Вт)
R 58,3×32,0×18,0 №87 (2570 Вт)
Как следует мотать первичную обмотку трансформатора?
Рис. 2 а) б)
в)
г)
д)
Если используются кольца 2000НМ отечественного производителя, то для начала – посредством наждачной бумаги скругляем наружные острые грани до состояния, приведённого на Рис.2 а).
Далее на кольцо следует намотать термостойкую изоляционную прокладку (Рис.2 б). В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, или сантехническую фторопластовую ленту.
Для буржуйских колец фирмы EPCOS первые два пункта практической ценности не имеют.
Настало время намотать однослойную обмотку «виток к витку» (Рис.2 в). Обмотка должна быть равномерно распределена по периметру магнитопровода – это важно!
Если в закромах радиолюбительского хозяйства не завалялся обмоточный провод необходимого диаметра, то обмотку можно намотать сразу в два, или несколько проводов меньшего диаметра (Рис.2 г). Не забываем, что зависимость тока от диаметра квадратичная и если, к примеру, нам надо заменить провод диаметром 1мм, то это будет не два провода по 0,5мм, а четыре (или два провода по 0,7мм).
Ну и для завершения первичного процесса поверх первичной обмотки трансформатора наматываем межобмоточную прокладку – пару слоёв лакоткани или другой изолирующей ленты (Рис.2 д).
А вот теперь мы плавно переходим к выполнению второй части упражнения.
Казалось бы, расчёты количества витков вторичной обмотки импульсного трансформатора настолько банальны и очевидны, что, как говаривал товарищ Мамин-Сибиряк – «яйца выеденного не стоят».
Да только вот опять – не складываются куличики в пирамидку, потому как далеко не каждый источник информации радует ожидаемым результатом. Поэтому для начала приведём формулу зависимости выходного напряжения от соотношения количества витков обмоток:
W1 (Uвх – Uдм1)/2 – Uнас ,
W2 (Uвых+Uдм2)
где Uвх – значение выпрямленного напряжения сети, равное 1,41×220≈310В,
Uдм1 – падение напряжения на входном диодном мосте ≈ 1В,
Uдм2 – падение напряжения на выходном диодном мосте ≈ 1В,
Uнас – напряжение насыщения на ключевом транзисторе ≈ 1,6В.
Подставив значения, получаем конечную формулу W2 = W1×(Uвых+1)/153.
Это формула верна для случаев, когда мы хотим получить расчётное значение выходного напряжения на холостом ходу.
Если же данный параметр нас интересует при максимальном токе нагрузки, то практика показывает, что количество витков вторичной обмотки следует увеличить на 10%.
Теперь, что касается диаметра провода вторичной обмотки трансформатора. Диаметр этот достаточно просто вычисляется по формуле:
D = 1,13×√ I / J ,
где I – ток обмотки, а J – параметр плотности тока, напрямую зависящий от мощности трансформатора и принимающий для кольцевых сердечников значения:
≈4,5 для мощностей до 50Вт; ≈4 для 50-150Вт; ≈3,25 для 150-300Вт и ≈2,75 для 300-1000Вт.
И в завершении приведу незамысловатый калькулятор для расчёта параметров вторичной обмотки импульсного трансформатора.
Точно так же, как и в случае с первичной обмоткой – вторичная должна быть как можно более равномерно распределена по периметру магнитопровода.
Количество вторичных обмоток ограничено только размерами магнитопровода. При этом суммарная величина снимаемых с обмоток мощностей не должна превышать расчётную мощность трансформатора.
При необходимости поиметь двуполярный источник питания, обе обмотки следует мотать одновременно, затем присовокупить начало одной обмотки к концу другой, а уже потом направить это соединение, в зависимости от личных пристрастий – к земле, средней точке, общей шине, корпусу, или совсем на худой конец – к GND-у.
Ну что ж, с трансформатором определились, пора озадачиться полным джентльменским набором настоящего мужчины – плавками с меховым гульфиком, а главное, непосредственно импульсным блоком питания, оснащённым такими значимыми прибамбасами, как устройства мягкого пуска и защиты от токовых перегрузок и КЗ.
Всё это хозяйство подробно опишем на странице Ссылка на страницу.
Расчёт импульсных трансформаторов
Автор: PLATON, dr-alex192@yandex.ru
Опубликовано 11.11.2014
Создано при помощи КотоРед.
Хочу рассказать о расчёте импульсных трансформаторов т.к. в сети очень много методик, но все они какие – то отдалённые и примерные с какими то непонятными коэффициентами, числами, откуда они взялись никто не описывает а приводит конечный результат в итоге результат получается с большим отклонением!!
Начнём с того, что мы захотели разработать некое устройство, посчитали необходимую требуемую мощность на выходе, допустим она равна 250 Вт, далее необходимо выбрать магнитопровод обеспечивающий заданую мощность.
Для этого существует реальная формула для оценки входной габаритной мощности магнитного элемента:
- кф – коэффициент формы напряжения или тока: для синуса =1,11 для прямоугольника =1.
- Кзс – коэффициент заполнения геометрического сечения магнитопровода материалом феромагнетика Кзс = 0,6 – 0,95 и даётся в справочной литературе на магнитный элемент.
- Кок – коэффициент заполнения окна магнитопровода сечениями проводников, Кок =0,35.
- n0 – коэффициент показывающий какую часть катушки занимает первичная обмотка, для трансформаторов n0 = 0,5.
- Sc – сечение магнитопровода.
- Sок – сечение окна магнитопровода.
- J – плотность тока, при естественном охлаждении 3500000 А/м2, при принудительном 6000000 А/м2
- В – рабочая индукция магнитопровода.
- F – частота напряжения либо тока Гц.
И так по этой формуле мы оценим реальную габаритную мощность трансформатора и прикиним что можем выжать с этого сердечника!
Например:
Имеем трансформатор от компьютерного блока питания с параметрами.
Сечение магнитопровода Sс = 0,9 см2
Сечение окна Sок = 2,4 см2
Рабочая индукция В = 0,15 (ориентировочное значение)
Частота предпологаемой работы нашего устройства f = 50кГц.
Все величины в единицах СИ. Т.е. переводим всё в метры, амперы, герцы, и.т.д.
Получим:
Так сердечник оценили, идём дальше, теперь необходимо разобраться с витками и сечением провода.
Начнём с витков в первичной обмотки, для этого существует замечательная формула:
Все данные мы рассмотрели выше, кроме U1– это непосредственно напряжение на первичной обмотке.
Допустим строим полумостовой преобразователь, Еп = 24В, следовательно U1 = 12В т.к первичная обмотка будет подключена через ёмкостной делитель т.е 24/2.
Далее считаем.
Вторичная обмотка допустим имеет напряжение 50В.
Все значения округляем до целого числа!
Теперь посчитаем сечение проводников обмоток.
P1 – мощность необходимая нам на выходе и принятая ранее 250 Вт.
- Вторичной: (потерями пренебрежём)
При намотке трансформатора не забываем про вытеснение тока на поверхность проводника в зависимости от частоты и производим расщепление проводника (литцендрант) или используем фольгу.
- Формула для расчёта расщепленного проводника:
Теперь не трудно посчитать и диаметр провода и раскладку провода!
В этой статье я хотел коротко и доступно рассказать о расчёте импульсного трансформатора, с разъяснением основных коэффициентов, что откуда берётся.
Также не забываем, что для более качественного расчёта необходимо использовать справочные данные магнитного элемента.
В итоге хотелось сказать, что использую даную методику уже несколько лет для расчёта как низкочастотных так и ВЧ трансформаторов.
Используемая литература:
Обрусник В.П. Магнитные элементы электронных устройств: Учебное пособие. – Томск: ТУСУР 2006 – 154 с.
Несколько упрощенных формул для расчета обычных и импульсных трансформаторов ИБП и БП.
Упрощенная формула для расчета ферритовых трансформаторов для ИБП.
5760/F(кГц) = К
Sсеч/К = V(вольт) на 1виток
где:
F – частота преобразования в Гц.
S – сечение ферритового магнитопровода в мм.
V – количество вольт на 1 виток
К – коэффициент зависимости от частоты.
Упрощенная формула для расчета обычных трансформаторов 50Гц.
Sсеч.мм*0.0003=V(вольт) на 1 виток
где:
S – сечение магнитопровода в мм
V – кол.вольт на 1 виток
Упрощенная формула для определения сечения круглого обмоточного провода
D х D / 1.27 = Sсеч.мм
где:
D – диаметр провода
S – площадь сечения провода
Упрощенная усредненная формула для расчета необходимого сечения намоточного провода
A / 3.85 = Sсеч.мм
где:
A – номинальный ток нагрузки
S – площадь сечения провода
Пример расчета трансформатора импульсного БП.
Допустим, имеем Ш образный ферритовый сердечник с размерами центрального столбика 11 и 12мм. Необходимо определить площадь сечения магнитопровода.
Перемножаем размеры между собой 11х12=132мм Sсеч=132мм.кв. Один параметр уже есть!
О определяем частоту преобразования ИБП, возьмем к примеру 50кГц. F(Гц)=50кГц это второй параметр!
Теперь нужно определить коэффициент зависимости от частоты К. Берем первую формулу из файла: 5760/F(кГц)=К, подставляем цифры 5760/50=115 Kз.ч.= 115. Мы определили коэффициент зависимости от частоты, он равен 115
Берем вторую формулу из файла S/K=V(вольт) на 1виток. Снова подставляем цифры которые у нас уже есть. 132/115=1.1 вольт на 1 виток, то есть если нам нужно намотать 150В первичку для полумостовой схемы ИБП. Делим 150/1.1=136 витков. Остальные обмотки рассчитываются так же. Допустим нам нужна вторичка 12В, значит 12/1.1=11 витков.
Специально для начинающих: Артур (Левша)